Repositorium
BIBAC-GW-based vectors for generating reporter lines for site-specific genome editing in planta
Journal Article / 2017
Anggoro, Damar Tri; Tark-Dame, Mariliis; Walmsley, Aimee; Oka, Rurika; Sain, Mara de; Stam, Maike
When generating transgenic plants, one of the objectives is to achieve stable expression of the transgene. Transgene silencing can be avoided by single copy integration of the transgene. Binary systems that predominantly result in single copy integrations, such as BIBAC vectors, are also single-copy in E. coli, the organism in which the T-DNA to be delivered to the plant is assembled. Although a low-copy number is important for stable maintenance of large DNA fragments in E. coli, it hampers cloning into the vector due to a low DNA yield. Here we describe BIBAC vectors to which Gateway site-specific recombination sites are added. These sites provide a fast and easy introduction of sequences of interest into any vector. Our Gateway-compatible BIBAC vectors are available with two selectable markers for plants - resistance to Basta (BIBAC-BAR-GW) and DsRed fluorescence in the seed coat (BIBAC-RFP-GW). Using the BIBAC-BAR-GW vector we have generated different fluorescence-based reporter constructs that, when delivered to plant cells, can be used to study and optimize precise, template-dependent site-specific genome editing by CRISPR-Cas9, TALENs or ZFP-nuclease complexes, and oligonucleotide-directed mutagenesis. We have generated 59 reporter lines in A. thaliana with our reporter constructs, and for the lines carrying single T-DNA integrations (32 out of 59) we have determined the integrity of the integrations, their genomic locations and the expression level of the reporters. Similarly to its original counterpart, BIBAC-BAR-GW generates single T-DNA integrations in Arabidopsis with 50% efficiency, and 90% of those are intact. The reporter constructs in the independent transgenic lines exhibit only an up to 3-fold difference in expression level. These features combined with an easy manipulation of the vector due to the added Gateway sites make the BIBAC-GW vectors an attractive tool for generating transgenic plants.
Techniques
ID | Corresponding Author Country |
Plant Species | GE Technique Sequence Identifier |
Trait Type of Alteration |
Progress in Research Key Topic |
---|---|---|---|---|---|
11 |
Mariliis Tark-Dame, Maike Stam Netherlands |
Arabidopsis thaliana |
Oligonucleotide-directed mutagenesis No information |
eYFP reporter gene PM |
Basic research Basic research |