What is a repositorium?

The repositorium is a searchable database that provides data on relevant articles from journals, company web pages and web pages of governmental agencies about studies/applications of genome-editing in model plants and agricultural crops in the period January 1996 to May 2018. Search options are article type, technique, plant, traits or free text. The repositorium is based on the systematic map of Dominik Modrzejewski et al., published in the journal environmental evidence. (Download article PDF).

Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance

Typ / Jahr

Journal Article / 2018


Zhou, Xiaogang; Liao, Haicheng; Chern, Mawsheng; Yin, Junjie; Chen, Yufei; Wang, Jianping; Zhu, Xiaobo; Chen, Zhixiong; Yuan, Can; Zhao, Wen; Wang, Jing; Li, Weitao; He, Min; Ma, Bingtian; Wang, Jichun; Qin, Peng; Chen, Weilan; Wang, Yuping; Liu, Jiali; Qian, Yangwen; Wang, Wenming; Wu, Xianjun; Li, Ping; Zhu, Lihuang; Li, Shigui; Ronald, Pamela C.; Chen, Xuewei

Crops carrying broad-spectrum resistance loci provide an effective strategy for controlling infectious disease because these loci typically confer resistance to diverse races of a pathogen or even multiple species of pathogens. Despite their importance, only a few crop broad-spectrum resistance loci have been reported. Here, we report the identification and characterization of the rice bsr-k1 (broadspectrum resistance Kitaake-1) mutant, which confers broad-spectrum resistance against Magnaporthe oryzae and Xanthomonas oryzae pv oryzae with no major penalty on key agronomic traits. Map-based cloning reveals that Bsr-k1 encodes a tetratricopeptide repeats (TPRs)containing protein, which binds to mRNAs of multiple OsPAL (OsPAL1– 7) genes and promotes their turnover. Loss of function of the Bsr-k1 gene leads to accumulation of OsPAL1–7 mRNAs in the bsr-k1 mutant. Furthermore, overexpression of OsPAL1 in wild-type rice TP309 confers resistance to M. oryzae, supporting the role of OsPAL1. Our discovery of the bsr-k1 allele constitutes a significant conceptual advancement and provides a valuable tool for breeding broad-spectrum resistant rice.
blast disease; Broad-spectrum resistance; innate immunity; rice; TPR protein
Proceedings of the National Academy of Sciences of the United States of America
Periodical Number
Page range


ID Corresponding Author
Plant Species GE Technique
Sequence Identifier
Type of Alteration
Progress in Research
Key Topic
921 Chen, Xuewei
Oryza sativa CRISPR/Cas9
Resistance to bacterial blight
Biotic stress tolerance