Repositorium

What is a repositorium?

The repositorium is a searchable database that provides data on relevant articles from journals, company web pages and web pages of governmental agencies about studies/applications of genome-editing in model plants and agricultural crops in the period January 1996 to May 2018. Search options are article type, technique, plant, traits or free text. The repositorium is based on the systematic map of Dominik Modrzejewski et al., published in the journal environmental evidence. (Download article PDF).

PtoMYB156 is involved in negative regulation of phenylpropanoid metabolism and secondary cell wall biosynthesis during wood formation in poplar


Typ / Jahr

Journal Article / 2017

Autoren

Yang, Li; Zhao, Xin; Ran, Lingyu; Li, Chaofeng; Di Fan; Luo, Keming

Abstract

Some R2R3 MYB transcription factors have been shown to be major regulators of phenylpropanoid biosynthetic pathway and impact secondary wall formation in plants. In this study, we describe the functional characterization of PtoMYB156, encoding a R2R3-MYB transcription factor, from Populus tomentosa. Expression pattern analysis showed that PtoMYB156 is widely expressed in all tissues examined, but predominantly in leaves and developing wood cells. PtoMYB156 localized to the nucleus and acted as a transcriptional repressor. Overexpression of PtoMYB156 in poplar repressed phenylpropanoid biosynthetic genes, leading to a reduction in the amounts of total phenolic and flavonoid compounds. Transgenic plants overexpressing PtoMYB156 also displayed a dramatic decrease in secondary wall thicknesses of xylem fibers and the content of cellulose, lignin and xylose compared with wild-type plants. Transcript accumulation of secondary wall biosynthetic genes was downregulated by PtoMYB156 overexpression. Transcriptional activation assays revealed that PtoMYB156 was able to repress the promoter activities of poplar CESA17, C4H2 and GT43B. By contrast, knockout of PtoMYB156 by CRISPR/Cas9 in poplar resulted in ectopic deposition of lignin, xylan and cellulose during secondary cell wall formation. Taken together, these results show that PtoMYB156 may repress phenylpropanoid biosynthesis and negatively regulate secondary cell wall formation in poplar.

Keywords
Periodical
Scientific reports
Periodical Number
Page range
41209–41222
Volume
7
DOI
10.1038/srep41209

Techniques

ID Corresponding Author
Country
Plant Species GE Technique
Sequence Identifier
Trait
Type of Alteration
Progress in Research
Key Topic
589 Luo; Keming
China
Populus tomentosa Carr. CRISPR/Cas9
MYB156
No information
SDN1
Basic research
Basic research