What is a repositorium?

The repositorium is a searchable database that provides data on relevant articles from journals, company web pages and web pages of governmental agencies about studies/applications of genome-editing in model plants and agricultural crops in the period January 1996 to May 2018. Search options are article type, technique, plant, traits or free text. The repositorium is based on the systematic map of Dominik Modrzejewski et al., published in the journal environmental evidence. (Download article PDF).

Identification of "safe harbor" loci in indica rice genome by harnessing the property of zinc-finger nucleases to induce DNA damage and repair

Typ / Jahr

Journal Article / 2014


Cantos, Christian; Francisco, Perigio; Trijatmiko, Kurniawan R.; Slamet-Loedin, Inez; Chadha-Mohanty, Prabhjit K.


Zinc-finger nucleases (ZFNs) have proved to be successful tools for targeted genome manipulation in several organisms. Their main property is the induction of double-strand breaks (DSBs) at specific sites, which are further repaired through homologous recombination (HR) or non-homologous end joining (NHEJ). However, for the appropriate integration of genes at specific chromosomal locations, proper sites for gene integration need to be identified. These regions, hereby named safe harbor loci, must be localized in non-coding regions and possess high gene expression. In the present study, three different ZFN constructs (pZFN1, pZFN2, pZFN3), harboring β -glucuronidase (GUS) as a reporter gene, were used to identify safe harbor loci on rice chromosomes. The constructs were delivered into IR64 rice by using an improved Agrobacterium-mediated transformation protocol, based on the use of immature embryos. Gene expression was measured by histochemical GUS activity and the flanking regions were determined through thermal-asymmetric interlaced polymerase chain reaction (TAIL PCR). Following sequencing, 28 regions were identified as putative sites for safe integration, but only one was localized in a non-coding region and also possessed high GUS expression. These findings have significant applicability to create crops with new and valuable traits, since the site can be subsequently used to stably introduce one or more genes in a targeted manner.

double-strand breaks (DSBs); Homologous recombination (HR); rice (Oryza sativa L.); safe harbor loci; Zinc-finger nucleases (ZFNs)
Frontiers in plant science
Periodical Number
Page range


ID Corresponding Author
Plant Species GE Technique
Sequence Identifier
Type of Alteration
Progress in Research
Key Topic
43 Prabhjit K. Chadha-Mohanty
Oryza sativa Zinc-finger nucleases
No information
Basic research
Basic research