Repositorium

What is a repositorium?

The repositorium is a searchable database that provides data on relevant articles from journals, company web pages and web pages of governmental agencies about studies/applications of genome-editing in model plants and agricultural crops in the period January 1996 to May 2018. Search options are article type, technique, plant, traits or free text. The repositorium is based on the systematic map of Dominik Modrzejewski et al., published in the journal environmental evidence. (Download article PDF).

Genome editing in the mushroom-forming basidiomycete Coprinopsis cinerea, optimized by a high-throughput transformation system


Typ / Jahr

Journal Article / 2017

Autoren

Sugano, Shigeo S.; Suzuki, Hiroko; Shimokita, Eisuke; Chiba, Hirofumi; Noji, Sumihare; Osakabe, Yuriko; Osakabe, Keishi

Abstract

Mushroom-forming basidiomycetes produce a wide range of metabolites and have great value not only as food but also as an important global natural resource. Here, we demonstrate CRISPR/Cas9-based genome editing in the model species Coprinopsis cinerea. Using a high-throughput reporter assay with cryopreserved protoplasts, we identified a novel promoter, CcDED1 pro , with seven times stronger activity in this assay than the conventional promoter GPD2. To develop highly efficient genome editing using CRISPR/Cas9 in C. cinerea, we used the CcDED1 pro to express Cas9 and a U6-snRNA promoter from C. cinerea to express gRNA. Finally, CRISPR/Cas9-mediated GFP mutagenesis was performed in a stable GFP expression line. Individual genome-edited lines were isolated, and loss of GFP function was detected in hyphae and fruiting body primordia. This novel method of high-throughput CRISPR/Cas9-based genome editing using cryopreserved protoplasts should be a powerful tool in the study of edible mushrooms.

Keywords
Periodical
Scientific reports
Periodical Number
1
Page range
1260
Volume
7
DOI
10.1038/s41598-017-00883-5

Techniques

ID Corresponding Author
Country
Plant Species GE Technique
Sequence Identifier
Trait
Type of Alteration
Progress in Research
Key Topic
1183 Osakabe, Keishi
Japan
Coprinopsis cinerea CRISPR/Cas9
GFP
Green fluorescence
SDN1
Basic research
Basic research