What is a repositorium?

The repositorium is a searchable database that provides data on relevant articles from journals, company web pages and web pages of governmental agencies about studies/applications of genome-editing in model plants and agricultural crops in the period January 1996 to May 2018. Search options are article type, technique, plant, traits or free text. The repositorium is based on the systematic map of Dominik Modrzejewski et al., published in the journal environmental evidence. (Download article PDF).

Defective APETALA2 Genes Lead to Sepal Modification in Brassica Crops

Typ / Jahr

Journal Article / 2018


Zhang, Yanfeng; Huang, Shuhua; Wang, Xuefang; Liu, Jianwei; Guo, Xupeng; Mu, Jianxin; Tian, Jianhua; Wang, Xiaofeng


Many vegetable and oilseed crops belong to Brassica species. The seed production of these crops is hampered often by abnormal floral organs, especially under the conditions of abiotic conditions. However, the molecular reasons for these abnormal floral organs remains poorly understood. Here, we report a novel pistil-like flower mutant of B. rapa. In the flower of this mutant, the four sepals are modified to one merged carpel that look like a ring in the sepal positions, enveloping some abnormal stamens and a pistil, and resulting in poor seed production. This novel mutant is named sepalcarpel modification (scm). DNA sequencing showed that the BrAP2a gene, the ortholog of Arabidopsis APETALA2 (AP2) that specifies sepal identity, losses the function of in scm mutant due to a 119-bp repeated sequence insertion that resulted in an early transcription termination. BrAP2b, the paralog of BrAP2a featured two single-nucleotide substitutions that cause a single amino acid substitution in the highly conserved acidic serine-rich transcriptional activation domain. Each of the two BrAP2 genes rescues the sepal defective phenotype of the ap2-5 mutant of Arabidopsis. Furthermore, the knockout mutation of the corresponding BnAP2 genes of oilseed rape (B. napus) by CRISPR/Cas9-mediated genome editing system resulted in scm-like phenotype. These results suggest that BrAP2 gene plays a key role in sepal modification. Our finding provides an insight into molecular mechanism underlying morphological modification of floral organs and is useful for genetic manipulation of flower modification and improvement of seed production of Brassica crops.

APETALA2 (AP2); Brassica; carpeloid sepal; flower development; oilseed rape; organ modification
Front. Plant Sci. (Frontiers in Plant Science)
Periodical Number
Page range


ID Corresponding Author
Plant Species GE Technique
Sequence Identifier
Type of Alteration
Progress in Research
Key Topic
906 Mu, Jianxin; Wang, Xiaofeng
Brassica napus CRISPR/Cas9
Sepal carpeloid phenotype
Basic research
Basic research