Repositorium

What is a repositorium?

The repositorium is a searchable database that provides data on relevant articles from journals, company web pages and web pages of governmental agencies about studies/applications of genome-editing in model plants and agricultural crops in the period January 1996 to May 2018. Search options are article type, technique, plant, traits or free text. The repositorium is based on the systematic map of Dominik Modrzejewski et al., published in the journal environmental evidence. (Download article PDF).

The Rice AAA-ATPase OsFIGNL1 Is Essential for Male Meiosis


Typ / Jahr

Journal Article / 2017

Autoren

Zhang, Peipei; Zhang, Yingxin; Sun, Lianping; Sinumporn, Sittipun; Yang, Zhengfu; Sun, Bin; Xuan, Dandan; Li, Zihe; Yu, Ping; Wu, Weixun; Wang, Kejian; Cao, Liyong; Cheng, Shihua

Abstract

Meiosis is crucial in reproduction of plants and ensuring genetic diversity. Although several genes involved in homologous recombination and DNA repair have been reported, their functions in rice (Oryza sativa) male meiosis remain poorly understood. Here, we isolated and characterized the rice OsFIGNL1 (OsFidgetin-like 1) gene, encoding a conserved AAA-ATPase, and explored its function and importance in male meiosis and pollen formation. The rice Osfignl1 mutant exhibited normal vegetative growth, but failed to produce seeds and displayed pollen abortion phenotype. Phenotypic comparisons between the wild-type and Osfignl1 mutant demonstrated that OsFIGNL1 is required for anther development, and that the recessive mutation of this gene causes male sterility in rice. Complementation and CRISPR/Cas9 experiments demonstrated that wild-type OsFIGNL1 is responsible for the male sterility phenotype. Subcellular localization showed that OsFIGNL1-green fluorescent protein was exclusively localized in the nucleus of rice protoplasts. Male meiosis in the Osfignl1 mutant exhibited abnormal chromosome behavior, including chromosome bridges and multivalent chromosomes at diakinesis, lagging chromosomes, and chromosome fragments during meiosis. Yeast two-hybrid assays demonstrated OsFIGNL1 could interact with RAD51A1, RAD51A2, DMC1A, DMC1B, and these physical interactions were further confirmed by BiFC assay. Taken together, our results suggest that OsFIGNL1 plays an important role in regulation of male meiosis and anther development.

Keywords
Chromosomes; male sterility; Meiosis; Oryza sativa; OsFIGNL1
Periodical
Front. Plant Sci. (Frontiers in Plant Science)
Periodical Number
Page range
757
Volume
8
DOI
10.3389/fpls.2017.01639

Techniques

ID Corresponding Author
Country
Plant Species GE Technique
Sequence Identifier
Trait
Type of Alteration
Progress in Research
Key Topic
895 Cao, Liyong; Cheng, Shihua
China
Oryza sativa CRISPR/Cas9
FIGNL1
Regulation of male meiosis and anther development
SDN1
Basic research
Basic research