Repositorium
Journal Article / 2017
Yuan, Jingya; Chen, Sushu; Jiao, Wu; Wang, Longfei; Wang, Limei; Ye, Wenxue; Lu, Jie; Hong, Delin; You, Siliang; Cheng, Zhukuan; Yang, Dong-Lei; Chen, Z. Jeffrey
Genetic imprinting refers to the unequal expression of paternal and maternal alleles of a gene in sexually reproducing organisms, including mammals and flowering plants. Although many imprinted genes have been identified in plants, the functions of these imprinted genes have remained largely uninvestigated. We report genome-wide analysis of gene expression, DNA methylation and small RNAs in the rice endosperm and functional tests of five imprinted genes during seed development using Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated gene9 (CRISPR/Cas9) gene editing technology. In the rice endosperm, we identified 162 maternally expressed genes (MEGs) and 95 paternally expressed genes (PEGs), which were associated with miniature inverted-repeat transposable elements, imprinted differentially methylated loci and some 21-22 small interfering RNAs (siRNAs) and long noncoding RNAs (lncRNAs). Remarkably, one-third of MEGs and nearly one-half of PEGs were associated with grain yield quantitative trait loci. Most MEGs and some PEGs were expressed specifically in the endosperm. Disruption of two MEGs increased the amount of small starch granules and reduced grain and embryo size, whereas mutation of three PEGs reduced starch content and seed fertility. Our data indicate that both MEGs and PEGs in rice regulate nutrient metabolism and endosperm development, which optimize seed development and offspring fitness to facilitate parental-offspring coadaptation. These imprinted genes and mechanisms could be used to improve the grain yield of rice and other cereal crops.
Techniques
ID | Corresponding Author Country |
Plant Species | GE Technique Sequence Identifier |
Trait Type of Alteration |
Progress in Research Key Topic |
---|---|---|---|---|---|
594 |
Chen, Jeffrey China, USA |
Oryza sativa |
CRISPR/Cas9 MEG2 |
Positive regulation of starch content and granule size SDN1 |
Basic research Basic research |
595 |
Chen, Jeffrey China, USA |
Oryza sativa |
CRISPR/Cas9 MEG3 |
Positive regulation of starch content and granule size SDN1 |
Basic research Basic research |
596 |
Chen, Jeffrey China, USA |
Oryza sativa |
CRISPR/Cas9 PEG1 |
grain yield, seed development regulation SDN1 |
Market-oriented Agronomic value |
597 |
Chen, Jeffrey China, USA |
Oryza sativa |
CRISPR/Cas9 PEG2 |
grain yield, seed development regulation SDN1 |
Market-oriented Agronomic value |
598 |
Chen, Jeffrey China, USA |
Oryza sativa |
CRISPR/Cas9 PEG3 |
grain yield, seed development regulation SDN1 |
Market-oriented Agronomic value |