What is a repositorium?

The repositorium is a searchable database that provides data on relevant articles from journals, company web pages and web pages of governmental agencies about studies/applications of genome-editing in model plants and agricultural crops in the period January 1996 to May 2018. Search options are article type, technique, plant, traits or free text. The repositorium is based on the systematic map of Dominik Modrzejewski et al., published in the journal environmental evidence. (Download article PDF).

CRISPR/Cas9-mediated targeted mutagenesis in the liverwort Marchantia polymorpha L

Typ / Jahr

Journal Article / 2014


Sugano, Shigeo S.; Shirakawa, Makoto; Takagi, Junpei; Matsuda, Yoriko; Shimada, Tomoo; Hara-Nishimura, Ikuko; Kohchi, Takayuki


Targeted genome modification technologies are key tools for functional genomics. The clustered regularly interspaced short palindromic repeats (CRISPR)-associated endonuclease Cas9 system (CRISPR/Cas9) is an emerging technology for targeted genome modification. The CRISPR/Cas9 system consists of a short guide RNA (gRNA), which specifies the target genome sequence, and the Cas9 protein, which has endonuclease activity. The CRISPR/Cas9 system has been applied to model animals and flowering plants, including rice, sorghum, wheat, tobacco and Arabidopsis. Here, we report the application of CRISPR/Cas9 to targeted mutagenesis in the liverwort Marchantia polymorpha L., which has emerged as a model species for studying land plant evolution. The U6 promoter of M. polymorpha was identified and cloned to express the gRNA. The target sequence of the gRNA was designed to disrupt the gene encoding auxin response factor 1 (ARF1) in M. polymorpha. Using Agrobacterium-mediated transformation, we isolated stable mutants in the gametophyte generation of M. polymorpha. CRISPR/Cas9-based site-directed mutagenesis in vivo was achieved using either the Cauliflower mosaic virus 35S or M. polymorpha EF1α promoter to express Cas9. Isolated mutant individuals showing an auxin-resistant phenotype were not chimeric. Moreover, stable mutants were produced by asexual reproduction of T1 plants. Multiple arf1 alleles were easily established using CRIPSR/Cas9-based targeted mutagenesis. Our results provide a rapid and simple approach for molecular genetics in M. polymorpha, and raise the possibility that CRISPR/Cas9 may be applied to a wide variety of plant species.

Clustered Regularly Interspaced Short Palindromic Repeats/genetics; Marchantia/genetics; Mutagenesis, Site-Directed; Plant Proteins/genetics
Plant & cell physiology
Periodical Number
Page range


ID Corresponding Author
Plant Species GE Technique
Sequence Identifier
Type of Alteration
Progress in Research
Key Topic
459 Hara-Nishimura, Ikuko; Kohchi, Takayuki
Marchantia polymorpha CRISPR/Cas9
Auxin resistance genotype
Basic research
Basic research